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Abstract—Photonic integrated circuit (PIC), as a promising
alternative to traditional CMOS circuit, has demonstrated the
potential to accomplish on-chip optical interconnects and com-
putations in ultra-high speed and/or low power consumption.
Wavelength division multiplexing (WDM) is widely used in optical
communication for enabling multiple signals being processed and
transferred independently. In this work, we apply WDM to optical
logic PIC synthesis to reduce the PIC area.

I. INTRODUCTION

As Moore’s law is approaching the limits, photonic integrated
circuits (PICs) have emerged as a promising alternative to
CMOS in ultra-high speed and power efficient on-chip inter-
connects and computing [1]. Taking the advantage of optics,
there are several recent works on optical logic synthesis. [2]
introduces a synthesis framework based on optical virtual gates,
where each literal in a logic function is implemented by a VG.
The major problem is the significant number of optical switches
and splitters. In the same paper, the authors also indicate the
possibility of using binary decision diagrams (BDD) to build
optical logics. The idea is to replace each BDD node by an
optical crossbar switch. The light is sourced from the BDD
terminal to the functional output. However, a critical problem
is caused by the garbage outputs related to the switches due
to the light flow direction, which further lead to complicated
re-routing and/or the application of optical terminators. As a
solution, [3] proposes to reverse the framework in the sense
that the light streams from the BDD top node to the BDD
terminal. By reversing the signal flow, the garbage outputs can
be greatly reduced. A more recent work [4] further improves
the optical power efficiency of the reverse-BDD architecture.
However, the reverse-BDD architecture has the limitation that
logic functions of multiple primary outputs (POs) are required
to be separately built. Otherwise, it is impossible to differentiate
the light received at the PD.

Wavelength division multiplexing (WDM), at this point, nat-
urally emerges as a promising solution. WDM is a technology
that enables multiple optical signals to be transmitted indepen-
dently and simultaneously in a single waveguide [5]. Although
WDM has been widely adopted in optical interconnects, its
application to optical computing has scarcely been considered.
In this work, we present an optical synthesis flow that exploits
WDM to reduce the number of optical switches.

II. BACKGROUND AND MOTIVATIONS

A. Optical Components and WDM
Optical crossbar switch is the basic optical computational unit,
which can be implemented by resonator-based micro-rings or
micro-disks, Mach-Zehnder interferometers, etc. Our following
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Fig. 1: (a) Schematic diagram of a micro-resonator and the 1×
2 and 1 × 1 switch notations (b) optical transmission spectra
measured at through and drop ports.

discussions are based on micro-rings. Yet, the high-level model
is general enough for other realizations. Fig. 1a shows a
schematic of a typical optical switch using micro-ring and the
high-level notations of 1×2 and 1×1 switches. The micro-ring
has one light input and two light outputs: the through output and
drop output. One electrical input Ea can be applied as a control
signal. A continuous wave light of wavelength λ is sourced
into the switch. Part of the light is coupled into the micro-ring,
and then coupled back to the waveguides with a certain phase
shift. The combination of the light of a certain phase difference
leads to a wavelength selective behavior depicted in Fig. 1b. The
output ports can either have no light, where the transmission
is close to 0, or have the input light transferred, where the
transmission is close to 1. The behavior is dependent on the
phase difference, which is further dependent on the voltage Ea.
By using either both the output ports or one of the output ports,
one can build either 1×2 switches or 1×1 switches. We define
that if the controlling signal a of the switch is logical 1, the
light is passed to the through port (marked as 1), otherwise to
the drop port (marked as 0).

The micro-ring switch can also be used to realize WDM. A
WDM system employs a multiplexer at the waveguide input
port to join the signals, and a demultiplexer at the receiver
to distinguish them. The multiplexer can be implemented by
optical combiners, which are basically joint waveguides; and
the demultiplexer can be implemented by micro-rings. One can
choose a specific voltage bias to adjust the transmission curve,
so that a specific wavelength can be filtered out. Generally, due
to the limitation of integrated lasers on wavelength spacing, on-
chip WDM has a capacity limit varying from 2 to 16 [6], [7].

B. BDD-based Optical Logic Synthesis
BDD is the fundamental data structure for optical logic synthesis
A BDD is a directed acyclic graph that can represent a multi-
primary output (PO) Boolean function. Fig. 2 shows a BDD
of two POs: f1 and f2. There are two types of BDD nodes,
decision nodes (e.g., circular node a, b and c) and terminal nodes



(e.g., square node 1). A decision node is functionally a crossbar
switch with two outputs, marked by solid and dashed lines. The
node is controlled by a decision variable v: if v = 1 (0), the
solid (dashed) output path is selected. The control signals are
primary inputs of the Boolean function, which are also the only
electrical signals required by the BDD architecture. A terminal
node has a value of 1 or 0, representing the functional output
evaluation. If there exists a path from a PO to the 1-terminal (0-
terminal), the PO is evaluated as logic 1 (0). Without modifying
the functionality, we can keep the 1-terminal and delete the
edges to the 0-terminal as shown in Fig. 2a. The POs’ functions
in the example can thus be written as f1 = a′c+ ab′c+ ab and
f2 = b′c+b. Common functional structures can be shared among
different POs so that the number of BDD nodes is reduced.
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Fig. 2: WDM principle ; BDD and the optical implementation.

A BDD can be directly mapped to an optical implementation.
Fig. 2b shows the implementation of Fig. 2a. The synthesis
simply replaces each BDD node by an optical crossbar switch.
Waveguides and optical combiners are employed to connect
signals. The light (λ) from a laser (or from the output of
the previous stage) is sourced from the BDD PO port. A
photodetector (PD) (or optical amplifier to the next computation
stage) is located at the 1-terminal. If there is light detected at
the PD, the output of the optical network is logical 1, otherwise
logical 0. Fig. 2b shows two wavelength λ1 and λ2 are sourced
to represent the two POs. However, in the previous works, as
WDM is not exploited, in order to distinguish the evaluation at
the 1-terminal for different PO functions, the authors attempt to
split the multi-PO BDD to several single-PO BDDs. As structure
sharing is discouraged, it generally leads to a bigger BDD and
hence bigger optical implementation. It can be calculated that
the separation of Fig. 2b leads to two more optical switches.
The difference would be non-trivial for bigger logic functions.

III. SYNTHESIS ALGORITHMS

The general flow of our proposed synthesis methods is shown
in Fig. 3. Given an arbitrary multi-primary output (PO) logic
function and WDM capacity constraint, the BDD reordering
engine is called to build a BDD with all the PO functions.
Given this information, the synthesis problem is first modeled
to a hypergraph partitioning problem and solved to minimize
the partitioning cost (HyPart). As the result of hypergraph
partitioning contains infeasible partitions, a second resolving
step is introduced (ReFlow). The resolving is achieved by
modeling and solving a min-cost max-flow problem. The final
result is hence guaranteed to be feasible. During the whole
procedure, BDD reordering engine is called for multiple times
for either the complete PO set or some PO subset in order to
produce further improvement: at the beginning, at the end of
HyPart and ReFlow.
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Fig. 3: Proposed Synthesis Flow.

A. HyPart: Hypergraph Partitioning
Based on the equivalence of BDD and optical implementa-
tion discussed in Section II, the BDD-based optical synthesis
problem under WDM capacity constraint is presented in the
following BDD-partitioning problem. We denote the WDM
capacity by Cap.

Problem III.1. BDD partitioning problem (BPP). Given a BDD
composed of |PO| primary outputs and a constant Cap, the
BDD partitioning problem is to find a partition of the BDD that
has the minimum total number of BDD nodes. The number of
functions of each partition is no greater than Cap.

In the following, we approximate BPP by a hypergraph
partitioning problem (HPP). A hypergraph is a generalization of
a graph in which a hyperedge can join any number of vertices.
Formally, a hypergraph Gh is a pair Gh = (Vh, Eh) where Vh
is a set of vertices, and Eh is a set of non-empty subsets of Vh
called hyperedges. As an example, Fig. 4a shows a hypergraph
with four vertices marked by f1 to f4, three 2-vertex hyperedges
represented by solid lines: (f1, f2), (f2, f3), (f3, f4); and one
3-vertex hyperedge represented by a curved area: (f1, f2, f3).
Each hyperedge weight w∗ is indexed by the indices of the
nodes connected to the hyperedge. For example, the weights of
the hyperedge (f2, f3) and the hyperedge (f1, f2, f3) are w∗23
and w∗123 respectively. The HPP problem is defined as follows:

Problem III.2. Hypergraph partitioning problem (HPP). Given
a hypergraph Gh = (Vh, Eh), the hypergraph partitioning
problem is to assign the vertices V into disjoint non-empty
partitions so that the hyperedge cut weight is minimum.

Note that HPP is known to be NP-hard [8]. Given a multi-
PO BDD, we construct the hypergraph by Algorithm 1. For
each primary output f , a hypergraph node is created and the
fan-out cone Cone in the BDD is collected (Line 1-3). Each
BDD node is then classified based on which PO cone it is
contained. If multiple BDD nodes are shared by multiple PO’s,
they are merged to the same group G which is indexed by the
corresponding PO set s (Line 4-7). A hyperedge is created for
each such group whose s has more than 1 PO’s. Let k be the
actual number of partitions in a set s. The edge weight ws is set
to be the number of BDD nodes contained in the group (|Gs|)
times a scaling factor α = k∗− 1, where k∗ := d|s|/Cape as a
straightforward approxiamtion of k. If k∗ = 1, it is set to 1 to
avoid zero weights (Line 8-11).

Fig. 4b and 4a show a 4-PO BDD and its corresponding
hypergraph respectively. There are four hypergraph nodes rep-



Algorithm 1 Hypergraph Construction for BPP.

1: for each primary output function fi of BDD do
2: Create a hypergraph vertex marked by fi
3: Conei ← {BDD nodes in its fanout cone}
4: for each BDD node ni do
5: scur ← {fj ’s: ni ∈ Conej}, Gscur ← {ni}
6: if scur is identical to an existing group Gs’s index s then
7: Merge Gscur and Gs to Gs←scur∪s = Gscur ∪Gs

8: for each group Gsi whose |si| > 1 do
9: Create a hyperedge connecting all f ’s ∈ si, whose

10: weight w∗si := wsi · αi, where
11: wsi := |Gsi |, αi := k∗si − 1, k∗si := d|si|/Cape
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Fig. 4: Hypergraph Modeling Example.

resenting POs and four hyperedges, each corresponding to a
shared region. The area of the regions in terms of the BDD
nodes is denoted as w12, w123, w23, w34, respectively. Each hy-
peredge cost is marked by a corresponding weight w∗ := w ·α,
which is w weighed by the scaling factor α described above.
In the hypergraph, the edge cost is the region area weighted
by a constant αsi = k∗si − 1. k∗si = d|si|/Cape can be viewed
as a lower-bound approximation of ksi : the actual number of
partitions in set si. The fundamental idea of linking HPP and
BPP is that, for HPP the lower cut cost meaning the fewer shared
nodes are separated to different partitions, then for BPP, the less
area overhead is introduced by a certain partition solution. Once
the partitions are computed, BDD reordering engine is called
again as a post-optimization.

B. ReFlow: Resolving Infeasible Partitions
HyPart does not always produce perfectly balanced partitions,
in the sense that the numbers of elements in some partitions
are smaller than the specified capacity of WDM and others
are greater. The latter case is infeasible in the context of
optical implementation. To resolve the problem, the following
algorithm ReFlow is proposed to balance the element allocation
in each partition. Basically, the above partition methodology has
achieved a near-balanced solution but with a small number of
capacity violations. The key idea of ReFlow is to transfer POs
from the partitions over the WDM capacity to those under the
capacity. Ultimately, we obtain a solution which satisfies the
capacity constraints. We will show how to solve the problem
through a min-cost max-flow model, which demonstrated effec-
tive application in physical design problems [5].

Fig. 5 is a pseudo-example illustrating how the network flow
model works. Suppose in the partition solution given by the
previous step, P1 and P2 are the over-capacity partitions that
require re-allocation and P3 and P4 are the under-capacity
partitions that can accommodate extra elements. To construct
the flow graph, we require the following flow nodes: (1) node
P1 and P2, corresponding to over-capacity partitions (marked

in Column-1); (2) node f1 to f3, corresponding to the PO’s
contained in the over-capacity partitions (marked in Column-2);
(3) node P3, P4, P ′1 and P ′2 corresponding to the target partitions
(marked in Column-3); (4) node s and t representing the pseudo
starting and terminating nodes. In Column-3, P3 and P4 are
the under-capacity partitions and P ′1 and P ′2 mirror the original
over-capacity partitions P1 and P2, which allows the possibility
that nodes in P1 and P2 can still stay in the original partition
as long as the flow is feasible, i.e., the capacity constraint is
satisfied. As for the flow edges, one flow edge is created: (1)
from an over-capacity P node to an f node, if f ∈ P given by
HyPart; (2) from each f node to each under-capacity P node;
(3) from an f node to an mirroring P ′ node if f ∈ P given by
HyPart; (4) from s to each over-capacity P node; and from
each under-capacity P node and mirroring P ′ node to t.
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Fig. 5: ReFlow Example.

Intuitively, if we observe a flow from fi to partition P or P ′

in Column-3, it means fi’s eventual destination is the partition
P or P ′. For the example in Fig. 5, the flow solution marked
by the blue edges means f1 ∈ P1 is moved to P3, f2 ∈ P2 is
moved to P4, and f3 ∈ P2 stays in P2. To guarantee a feasible
re-assignment, the edge capacities are set as follows. Each edge
from s to a Column-1 P node has a capacity equivalent to
the number of f ’s in the partition P to accommodate for the
required flow in the next step. Each edge from a Column-1
over-capacity P node to an f node has a capacity of 1, which
constrains that f can only be reallocated from one partition;
similarly, each edge from f to a Column-3 under-capacity P or
to a mirroring node P ′ has a capacity of 1, which constrains that
f can only be reallocated to one partition. Finally, each edge
from a Column-3 over-capacity P node to t has a capacity of
the availability, i.e., the difference between the WDM capacity
and the number of the existing POs; each edge from a Column-
3 mirroring P ′ node to t has a capacity of the WDM capacity,
to represent the maximum allowable capacity.

As for the edge cost, noting that our objective is to reassign
the elements in a way that minimizes the reassignment cost, how
to estimate the reassignment cost is critical. In our method, the
cost for a flow edge from a f node to an under-capacity node P
is evaluated in a local perspective, i.e., by the number of BDD
nodes resulted by adding f to P . BDD reordering engine is
called to obtain this value. The higher cost will discourage the
reassignment greater. For all the other edges, the cost is 0 so
that flowing is maximumly encouraged. as long as the flow edge
capacity is satisfied. Hence, it is also encouraged that an f node
stays in the original partition. In this way, the original partition
solution, which is achieved by a more global perspective, are
observed to the greatest extent.



TABLE I: Experimental results with different WDM capacities.
# of BDD nodes wdm cap.=4 wdm cap.=8 wdm cap.=16

benchmark #po sep. all ours rand. time ours rand. time ours rand. time
cht 36 154 89 107 133.6 0.2 98 123.7 0.1 93 112.6 0.03
apex7 37 458 316 306 413.0 1.0 283 377.0 0.5 280 352.7 0.1
stpmotor 29 491 243 358 461.0 0.9 283 385.1 0.1 246 310.2 0.2
x4 71 602 366 457 582.0 3.6 402 527.0 1.1 373 463.1 0.2
example2 66 645 269 379 494.2 1.4 306 416.0 0.2 283 358.9 0.1
i5 66 672 133 221 480.4 0.3 175 385.2 0.2 151 301.0 0.2
x3 99 851 590 674 813.2 6.1 631 770.7 0.3 623 839.8 0.3
pdc 40 960 603 680 874.0 4.1 672 798.6 0.8 610 732.8 0.2
spla 46 977 592 708 837.3 6.0 660 778.8 1.3 593 712.5 1.0
vda 39 1117 549 721 912.8 1.3 644 794.2 0.2 601 694.6 0.2
apex5 85 1410 1084 1247 1379.9 24.3 1140 1338.8 4.2 1107 1269.2 0.5
simple spi 144 1473 983 1282 1498.5 15.2 1151 1428.0 7.6 1027 1329.4 11.6
i2c 140 1836 1131 1379 1690.2 36.8 1286 1565.2 14.7 1220 1441.0 11.4
frg2 139 1981 1402 1577 1965.7 14.0 1347 1897.5 5.1 1178 1836.6 13.0
i9 63 2079 1691 1912 2062.4 4.7 1855 2011.0 3.6 1793 1935.6 3.2
k2 43 2113 1295 1670 1956.1 3.8 1483 1824.1 0.4 1372 1637.8 0.4
cps 102 2224 1027 1288 1653.7 26.6 1087 1498.5 9.0 1011 1373.2 0.5
i8 81 2368 2120 2096 2316.3 5.0 1900 2211.8 3.0 2150 2033.6 0.5
seq 35 2468 1823 1790 2346.4 3.5 1943 2263.9 0.6 1850 2174.8 0.6
average 71.63 1309.42 858.21 992.21 1203.72 8.80 912.95 1126.10 2.80 871.63 1047.86 2.3
# of sw 1309.42 906.93 1063.84 1275.35 984.58 1197.69 943.26 1119.49

IV. EXPERIMENTAL RESULTS

We implemented the proposed flow in C++ with CUDD package
[9], and tested it on a 3.4GHz Linux machine. The following
experiments were conducted on International Workshop on
Logic and Synthesis and Microelectronics Center of North
Carolina benchmarks [10], [11]. The hMetis binary [12] was
applied as the hypergraph partitioning solver and the open
library LEMON [13] was applied as the min-cost max-flow
network solver. We apply CUDD_REORDER_SYMM_SIFT, a
common BDD reordering heuristic available in CUDD.

Table I listed the number of BDD nodes and runtime un-
der different WDM capacity constraints. The averages of the
benchmarks are listed in the last 2 rows. The first two columns
list the benchmark name and the number of primary outputs
(#PO). The next two columns denoted with sep and all show
the number of BDD nodes for the two extreme cases that all POs
are separated (which is also the method of the previous work),
and that all POs are grouped in one, respectively. It can be seen
that the number of BDD nodes for the sep case is 52% greater
than the all case on average. Column 5-7, 8-10, 11-13 for the
benchmark list the results for three WDM capacity settings: 4, 8
and 16. The columns named as ours correspond to the number
of BDD nodes given by our method. The rows named by # of
sw compute the actual number of optical switches by adding the
number of filtering switches, which in the worst case, is equal
to the number of POs. The ratios of the switch number of our
method compared to that of the previous sep. method are 81.2%,
75.2% and 72.0% on average for WDM capacity of 4, 8 and 16,
respectively. To make a fair comparison, we also compute 10
random partition solutions following the procedure described
above, whose averages are listed in the rand. columns. The
ratio compared to the random solutions are 83.4%, 82.2% and
84.3% on average. We note that, as to obtain the optimal BDD
(i.e., with the optimal variable order) is known to be NP-hard
[14] and BDD reordering algorithms are essentially heuristic,
the optimality of the computed BDD is targeted but is not
guaranteed. As a result, in some cases, the BDD size under
capacity constraints can even be smaller than those without the

constraint. We attribute this phenomenon to the heuristic nature
of BDD reordering engine. Finally, the total runtime in seconds
for our methods is listed under the time columns. The average
is about 8.8s, 2.8s and 2.3s, for the three capacities, respectively.
The reason for the decrease is that, when the capacity of WDM
increases, the chance of infeasible partition solutions produced
by hMetis, thus the need for ReFlow, also decreases.
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